NASA TH X- 65920

ATS SIMULTANEOUS AND TURNAROUND RANGING EXPERIMENTS

JOHN-S. WATSON
BARBARA H. PUTNEY

N72-27885

(NASA-TM-X-65920) ATS SIMULTANEOUS AND TURNAROUND RANGING EXPERIMENTS J.S. TURNAROUND RANGING EXPERIMENTS J.S. Watson, et al (NASA) Nov. 1971 45 p CSCL 22A

Unclas G3/30 34236

NOVEMBER 1971

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

NATIONAL TECHNICAL INFORMATION SERVICE

S Department of Commerce Springfield VA 22151

ATS SIMULTANEOUS AND TURNAROUND RANGING EXPERIMENTS

John S. Watson Trajectory & Dynamics Branch

> Barbara H. Putney Geodynamics Branch

Trajectory Analysis & Geodynamics Division

November 1971

Goddard Space Flight Center Greenbelt, Maryland

PRECEDING PAGE BLANK NOT PILMED

ATS SIMULTANEOUS AND TURNAROUND RANGING EXPERIMENTS

John S. Watson Barbara H. Putney

ABSTRACT

This report explains the data reduction and spacecraft position determination used in conjunction with two ATS experiments - Trilateration and Turnaround Ranging - and describes in detail a multilateration program that is used for part of the data reduction process. The process described is for the determination of the inertial position of the satellite, and for formating input for related programs. In the trilateration procedure, a geometric determination of satellite position is made from near simultaneous range measurements made by three different tracking stations. Turnaround ranging involves two stations; one, the master station, transmits the signal to the satellite and the satellite retransmits the signal to the slave station which turns the signal around to the satellite which in turn retransmits the signal to the master station. The results of the satellite position computations using the multilateration program are compared to results of other position determination programs used at Goddard. All programs give nearly the same results which indicates that because of its simplicity and computational speed the trilateration technique is useful in obtaining spacecraft positions for near synchronous satellites.

PRICEDING PAGE BLANK NOT FILMED

CONTENTS

		Page
Abstr	act	iii
I.	Introduction	1
п.	Data Types	3
ııı.	Algorithm and Formulas	3
IV.	Computation of the Inertial Coordinates of the Tracking Stations	9
v.	Computation of the Inertial Coordinates of the Satellite	11
VI.	Computation of the Longitude and Latitude of the Sub-Satellite Point	13
VII.	Results	15
VIII.	Conclusion	21
IX.	Acknowledgment	22
х.	References	22
Appen	dix	23

ATS SIMULTANEOUS AND TURNAROUND RANGING EXPERIMENTS

I. INTRODUCTION

The purpose of this document is to explain the data reduction used in conjunction with two ATS spacecraft position determination experiments — Trilateration and Turnaround Ranging — and to describe in detail one of the programs used for these experiments. In the trilateration procedure, a geometric determination of satellite position is made from near simultaneous range measurements made by three different tracking stations (see Figure 1). Turnaround ranging involves two stations; one, the master station transmits the signal to the satellite and the satellite retransmits the signal to the slave station which turns the signal around to the satellite which in turn retransmits the signal to the master station.

The Trilateration experiment used near simultaneous measurements of range to obtain a position vector of the satellite. In reality, three stations took measurements during the same ten minute period of time and by fitting this data with three polynomials as a function of raw data time one is able to create groups of simultaneous measurements from the polynomials. See page 18 for details of the ranging pattern. These groups of simultaneous measurements were then fed into a Hughes trilateration program — Trilatron 1 (Reference 1), and out of each group of measurements one position vector of the satellite was obtained. The advantage of the trilateration technique is that it does not require a sophisticated force model that is required by conventional orbit determination programs. The trilateration method requires that the three tracking stations be located so as to give a well determinated triangle, with the subsatellite point preferably being located in the triangle.

Turnaround Ranging uses a master station and some slave stations. The signal leaves the master station, travels to the satellite, returns to a slave station and is turned around to the satellite and then back to the master station, where it is recorded. By using this scheme, the slave station equipment need only be capable of turning the signal around to the satellite. Because the master station is tracking the satellite in its normal mode (two way delay time), the slave station range can be extracted from the four way delay time.

In addition to describing the Trilateration and Turnaround Ranging experiments and their results, this report describes a more general multilateration program to determine the position of a satellite in synchronous orbit. In this program the position of the satellite is computed by knowing the ranges from three or more observation points, and the times of the observations which should

be as near the same time as possible. To obtain a solution, the program begins by making an initial estimate of the inertial coordinates of the satellite. For the first observation time, this initial estimate is obtained by using the trilateration technique given in Reference 2. The initial estimate for each succeeding observation point is taken from the results of the previous one. From the inertial coordinates of the tracking station location and of the satellite, the program computes a range for each observation point and compares these to the observed ranges. By using a Taylor series expansion and a least squares process a converged set of the inertial coordinates of the satellite is then determined. If there are only three observation points, Cramer's rule may be used to solve the set of three simultaneous equations for the position of the satellite. In addition, the multilateration program referred to in this report may be used to obtain a solution if there are more than three observation points.

II. DATA TYPES

Two types of data were used. The two way delay data is the normal kind from the ATSR ranging system. It measures the time it takes for a signal to travel from the station to the satellite and return to the ground. This data type and its measurement is given in references 3 and 4. The other data type is four way delay time or Turnaround Ranging. This measurement signal leaves the master station, travels to the satellite, returns to the slave station, is turned around to the satellite and finally is returned to the master station. The master station must have tracked in the two way mode and in the same time period as well, in order to extract the slave station's range at this time from the turnaround range.

Trilateration Experiment

In order to be able to trilaterate in the sense of the Hughes trilateration program, it is necessary to obtain a series of overlapping range values to three different stations. The Hughes Trilateration program then creates a position and velocity vector from this information. For detailed information about this program see reference 1. One of the functions of the software package described in this document is to create the required format from the polynomials representing the raw data. See Reference 4 for raw data format information.

Turnaround Ranging

From the four way delay data a range to the satellite must be determined. The only station that needs to be fully equipped is the master station. The slave station need only to be able to turn the signal around. The output of this software package is a preprocessed series of ranges to be input to the trilateration program, and a DODS observation tape to be input to an orbit determination program.

III. ALGORITHM AND FORMULAS

This section will describe the formulas used and how they are derived to process this data. The details of the two way range data type are described in reference 3 and it is suggested that the reader read that document. The actual programmed equations will be marked with a starred number. It is hoped that the intermediate steps will make their derivation clear. The major problem in interpreting this data is that the time on the raw data message is not the proper observation time tag. Iterating so as to converge on the proper time tag and relating this time tag to the raw data time is the one complication of the procedure described in this algorithm.

A smoothing program creates a Chebyshev polynomial up to 12th degree of raw data and raw data time. See reference 3, Section 6.3. The spans of data have to be organized and read into this program in the groups that one wishes to have fitted with polynomials. There are sorting programs to do this. The polynomial coefficients and other details for creating the DODS Observation Tape are passed to the multilateration program where the ranges and proper time tags are then determined.

A time T_R , is chosen to be satellite time. The relationship between the raw data time and the ground received time is shown in the following figures. In order to find the proper measurement to correspond to the satellite time T_R , one needs the raw data time T_D that corresponds (the measurement polynomial is a function of raw data time). The connection between the times can be achieved by iterating to find the proper raw data time and therefore proper measurement to correspond to the satellite time, T_R . The convergence is very rapid and few iterations are necessary.

Let

 $T_D = raw data time$

 δ_2 = two way delay time raw measurement

 D_{M} = total two way delay time of the master station

 δ_4 = four way delay time raw measurement

D₄ = total four way delay time

D_s = total two way delay time of the slave station

 N_{AM} = the ambiguity number for the master station

 N_{AS} = the ambiguity number for the slave station

 $\triangle A$ = the size of the ambiguity in time

 T_R = the proper data time tag

 T_{I} = time the signal left the ground

 $T_{\rm F}$ = time the signal returned to the ground

c = speed of light

 S_{M} = master station delay

 S_S = slave station delay

One first chooses sets of data which overlap in time. For both trilateration and turnaround ranging it is a requirement to have the ranges from all the stations involved at the same time.

$T_R = first overlap time$

Since the polynomials are in terms of T_D time an estimate of the T_D corresponding to T_R needs to be made. We will first consider the 2 way delay measurement.

Since 1
$$T_{R} = \frac{T_{I} + T_{F}}{2}$$

$$T_{I} = T_{D} - N_{AM} \triangle A$$

$$T_{\mathbf{F}} = T_{\mathbf{D}} + \delta_{\mathbf{2}}$$

$$T_{R} = T_{D} - \frac{N_{AM} \triangle A}{2} + \frac{\delta_{2}}{2}$$

$$T_{D} = T_{R} + \frac{N_{AM} \triangle A}{2} - \frac{\delta_{2}}{2}$$

and since δ_2 is unknown at this point the first approximation to T_D is

2*
$$T_D = T_R + \frac{N_{AM} \triangle A}{2} \quad \text{from equation } \boxed{5}$$

3* Then obtain δ_2 at T_D from the Chebyshev polynomial.

Compute from equation (4)

4*

$$T_{R}' = T_{D} - \frac{N_{AM} \triangle A}{2} + \frac{\delta_{2}}{2}$$

Compare

5* If $|T_R/T_R' - 1| > \epsilon$, T_R and T_R' have not converged. According to equation 5

$$T_{D} = T_{R} + \frac{N_{AM} \triangle A}{2} - \frac{\delta_{2}}{2}$$

and we approximated it by

 $T_{D} = T_{R} + \frac{N_{AM} \triangle A}{2}$

so let

 $T_{D} = T_{D} - \frac{\delta_{2}}{2}$

and try again from equation 3*.

5* If $|T_R/T_R'-1| \le \epsilon T_R$ and T_R' have converged, then compute 7* $D_M = \delta_2 + N_{AM} \triangle A - S_M$ the master station total delay.

If all the data is two way data one would repeat this process with each station.

At this point, one would have the proper measurement from each station at the same time. One could solve for a position vector at time T_R (trilaterate) if one has ranges from three stations.

If some of the data is four way (turnaround) data the following algorithm must be used.

The four way data contains the sum of ranges to two stations. It is necessary to extract the range to the slave station from this data. In order to do this, one must have tracked the satellite from the master station alone at approximately the same time. This is only necessary because the orbit determination programs currently do not accept the summed range as a data type. Due to this restriction, one relies on the smoothing polynomial to fill in the gaps in the data. It is assumed at this point that the master station total delay is known at time T_R , as obtained in the previous algorithm. It is now necessary to find the four way total delay, D_4 and then to compute the total two way delay for the slave station $(D_S = D_4 - D_M)$.

Choose the same T_R as before.

Since

$$T_{R} = \frac{T_{I} + T_{F}}{2}$$

$$T_{I} = T_{D} - N_{AM} \triangle A - N_{AS} \triangle A$$

$$T_{\mathbf{F}} = T_{\mathbf{D}} + \delta_{\mathbf{4}}$$

$$T_{R} = T_{D} - \left(\frac{N_{AM} \triangle A + N_{AS} \triangle A}{2} \right) + \frac{\delta_{4}}{2}$$

(10)
$$T_{D} = T_{R} + \left(\frac{N_{AM} \triangle A + N_{AS} \triangle A}{2}\right) - \frac{\delta_{4}}{2}$$

and since δ_4 is unknown at this point the first approximation to T_D is

8*
$$T_{D} = T_{R} + \left(\frac{N_{AM} \triangle A + N_{AS} \triangle A}{2}\right).$$

9* Then obtain δ_4 at T_D from the Chebyshev polynomial.

Compare δ_4 and δ_2 .

If $\delta_4 \le \delta_2$ then an extra ambiguity had to occur because of the combined effect of two stations. This means equation (10) needs an extra $\triangle A/2$ added to it and

$$T_D = T_R + \left(\frac{N_{AM} \triangle A + N_{AS} \triangle A + \triangle A}{2} \right) - \frac{\delta_4}{2}$$

for this case.

Therefore

$$T_{D} = T_{D} + \frac{\Delta A}{2}$$

and since the initial $\rm T_D$ had to be far off another 10* δ_4 is obtained from the Chebyshev polynomial at the new $\rm T_D$.

D₄ is then computed.

11*
$$D_4 = \delta_4 + N_{AM} \triangle A + N_{AS} \triangle A + \triangle A - S_M - S_S$$

12*
$$T_R' = T_D - \left(\frac{N_{AM} \triangle A + N_{AS} \triangle A + \triangle A}{2}\right) + \frac{\delta_4}{2}$$
 from equation (11)

If the new $\delta_4 > \delta_2$ recompute T_R and D_4 as if that were the original situation as below. When $\delta_4 > \delta_2$ compute

13*
$$T'_{R} = T_{D} - \left(\frac{N_{AM} \triangle A + N_{AS} \triangle A}{2}\right) + \frac{\delta_{4}}{2} \quad \text{from equation } 9$$

and 14*
$$D_4 = \delta_4 + (N_{AM} \triangle A + N_{AS} \triangle A) - S_M - S_S$$

If 15* $|T_R/T_R'-1| \le \epsilon$, T_R and T_R' have converged then

$$Ds = D_4 - D_M$$

If 15* $|T_R/T_R'-1| > \epsilon$, T_R and T_R' have not converged then

let 16*
$$T_D = T_D - \frac{\delta_4}{2}$$

and try again from equation 3*.

After two way delays are determined for each station the range R for each station is computed

17*
$$R = \frac{c}{2} D, \text{ where } D = D_{M} \text{ or } D_{S}$$

The output is properly formatted and the data is time tagged, thus completing this task.

IV. COMPUTATION OF THE INERTIAL COORDINATES OF THE TRACKING STATIONS

From the results of the previous section, we now have a set of ranges (three or more) at the same time. The function of the multilateration program is to compute the sub-satellite point at this time.

The multilateration method takes the set of three or more simultaneous ranges, uses a least squares solution to compute the inertial satellite position, and then computes the sub-satellite point in the earth fixed system. These items are computed according to the formulas presented in sections IV, V, and VI.

However, first one needs to know the coordinates of the ranging stations. The method for computing the inertial coordinates of the tracking stations is the one presented on pages 16-18 of Reference 5.

The following data are needed to compute the coordinates of the tracking stations:

- (λ_0) = the hour angle of the first point of Aries
- (λ_E) = the geodetic longitude of the terrestrial tracking station in radians, as measured eastward from Greenwich (a negative sign must be prefixed if measured westward from Greenwich)
- $(\theta_{\rm D})$ = the geodetic latitude of the station in radians, measured as positive north of the Equator, and as negative south of the Equator
- (H') = the altitude of the station in feet, measured positive above sea level and negative below sea level
- (ω) = the angular velocity of rotation of the earth in radians per hour
- $(\triangle T)$ = the difference in hours between the observation time and midnight preceding the observation time

- (f) = the flattening coefficient of the earth
- $(\theta_{\rm G})$ = the geocentric latitude of the tracking station in radians
 - $(\hat{\rho})$ = the geocentric distance of the tracking station, in units of earth radii
 - (e) = the eccentricity of the earth

The geodetic longitude ($^{\lambda}_{E}$), geodetic latitude ($^{\theta}_{D}$), and height (H) of the tracking station are known. From these the inertial geocentric coordinates of the tracking station in spherical coordinates ($^{\hat{\rho}}$, $^{\theta}_{G}$, $^{\delta}$) can be computed. These spherical coordinates can then be converted to a Cartesian system of coordinates ($^{\kappa}_{T}$, $^{\theta}_{T}$, $^{\theta}_{T}$).

In the meridian section of the earth through an observer, the position of the latter relative to the earth's center can be expressed in rectangular coordinates as:

$$\hat{\rho} \sin \theta_{G} = S \sin \theta_{D}, \hat{\rho} \cos \theta_{G} = C \cos \theta_{D}.$$

These serve to define the auxiliary functions S and C.

C =
$$[\cos^2 \theta_D + (1 - f)^2 \sin^2 \theta_D]^{-1/2}$$

S = $(1 - f)^2 C$

 $H = (4.77865 \times 10^{-8}) H'$ (converts feet to earth radii)

$$\theta_{G} = \arctan \left[\left(\frac{S + H}{C + H} \right) \right] \tan \theta_{D}$$

$$\hat{\rho} = \left[(S + H)^2 \sin^2 \theta_D + (C + H)^2 \cos^2 \theta_D \right]^{1/2}$$
$$\delta = \lambda_0 + \omega(\Delta T) + \lambda_E$$

 (δ) = the angle in radians between the vernal equinox and the observation meridian plane

$$\mathbf{x}_{T} = \hat{\rho} \cos \theta_{G} \cos \delta$$

$$\mathbf{y}_{T} = \hat{\rho} \cos \theta_{G} \sin \delta$$

$$\mathbf{z}_{T} = \hat{\rho} \sin \theta_{G}$$

 (x_T, y_T, z_T) = the geocentric coordinates of the tracking station in units of earth radii

We now have the station locations in quantities and units that we can use in the program.

V. COMPUTATION OF THE INERTIAL COORDINATES OF THE SATELLITE

This multilateration method computes the inertial coordinates of the satellite by a least squares iteration procedure, given the ranges from the satellite to three or more tracking stations, the inertial coordinates of the tracking stations, and an initial estimate of the inertial coordinates of the satellite. This section describes the mathematical method for computing the inertial coordinates of the satellite. We refer to this method as the multilateration method.

 (R_o) = observed range in earth radii

 (R_C) = computed range in earth radii

(x, y, z) = the present estimate of the inertial coordinates of the satellite, obtained initially by using the trilateration method given in Reference 2.

 $(x^{\dagger}, y^{\dagger}, z^{\dagger}) =$ the new estimate of (x, y, z)

$$R_C^2 = (x - x_T)^2 + (y - y_T)^2 + (z - z_T)^2$$

A function of three variables may be expanded in a series by Taylor's formula in the form:

$$f(x + \Delta x, y + \Delta y, z + \Delta z) - f(x, y, z)$$

$$= \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{\partial f}{\partial z} \Delta z$$

+ higher order terms

or
$$\Delta f = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{\partial f}{\partial z} \Delta z$$
, ignoring the higher order terms

since

$$R_C^2 = f(x, y, z)$$

we can write

$$\Delta R^2 = \frac{\partial R_C^2}{\partial x} \Delta x + \frac{\partial R_C^2}{\partial y} \Delta y$$

$$+\frac{\partial R_C^2}{\partial z} \Delta z$$

where

$$\triangle R^2 = R_O^2 - R_C^2$$

$$\frac{\partial R_C^2}{\partial x} = 2x - 2x_T$$

$$\frac{\partial R_C^2}{\partial y} = 2y - 2y_T$$

$$\frac{\partial R_C^2}{\partial z} = 2z - 2z_T$$

Therefore

$$\Delta R^{2} = (2x - 2x_{T}) \Delta x$$

$$+ (2y - 2y_{T}) \Delta y + (2z - 2z_{T}) \Delta z$$

or

$$\frac{1}{2} \triangle R^2 = (x - x_T) \triangle x + (y - y_T) \triangle y$$

$$+ (z - z_T) \triangle z \tag{5.1}$$

A least squares routine is then used to compute $\triangle x$, $\triangle y$, $\triangle z$. The least squares method used is the one described on pages 61-66 of Reference 5.

Then

$$x' = x + \Delta x$$

$$y' = y + \Delta y$$

$$z' = z + \Delta z$$

The program then returns to Equation 5.1 with x, y, z being replaced by x', y', and z'. $\triangle R^2$ is re-evaluated. This iterative procedure is continued until the standard deviation of fit of 1/2 $\triangle R^2$ reaches the desired tolerance, and we thus have the inertial position of the spacecraft.

VI. COMPUTATION OF THE LONGITUDE AND LATITUDE OF THE SUB-SATELLITE POINT

The method for transforming the inertial position coordinates (x, y, z) of the satellite, as computed above, to the East longitude (λ_s) , the geodetic latitude (θ_D) , and the elevation of the satellite (H_S) above and normal to the adopted ellipsoid, and the geocentric radius magnitude (ρ) is given in this section.

The symbols used in this section are the same as those used in Section IV, except they refer to the sub-satellite point instead of the tracking station location. The method used in this section may be found in Reference 1.

The converged values of the geocentric coordinates of the satellite (x, y, z) have been found using Section V. Proceeding from these knowns, we compute the unknown longitude, latitude, and elevation as follows:

$$\rho^2 = x^2 + y^2 + z^2$$

$$e^2 = 2f - f^2$$

$$\cos \theta_{\rm G} = \left[\frac{({\rm x}^2 + {\rm y}^2)}{\rho^2} \right]^{1/2}$$

$$\sin \theta_{\mathbf{G}} = \frac{\mathbf{z}}{\rho}$$

$$\tan \theta_{\mathbf{G}} = \frac{\sin \theta_{\mathbf{G}}}{\cos \theta_{\mathbf{G}}}$$

$$\tan \theta_{\rm G} = (1 - f)^2 \tan \theta_{\rm D}$$

$$\theta_{\rm D} = \arctan \left[\frac{\tan \theta_{\rm G}}{(1-{\rm f})^2} \right]$$

$$\cos \delta = \frac{x}{\rho \cos \theta_G}$$

$$\sin \delta = \frac{y}{\rho \cos \theta_G}$$

$$\lambda_s = \delta - \lambda_0 - \omega(\Delta T)$$

if λ_s is greater than 180°, the program will take λ_s as

$$\lambda_{S} = \lambda_{S} - 360^{\circ}$$

$$\Delta \theta_{G}' = 0$$

$$\theta_{G}' = \theta_{G} - \Delta \theta_{G}' \qquad (6.1)$$

$$r_c = \left[\frac{1 - e^2}{1 - e^2 \cos^2 \theta_c'}\right]^{1/2}$$

$$\begin{split} \theta_{\mathrm{D}} &= \tan^{-1} \left[\frac{\tan \theta_{\mathrm{G}}^{\, \prime}}{(1 - \mathrm{f})^2} \right] \\ \mathrm{H} &= \left[\rho^2 - \mathrm{r_c}^2 \sin^2 \left(\theta_{\mathrm{G}} - \theta_{\mathrm{G}}^{\, \prime} \right) \right]^{1/2} - \mathrm{r_c} \cos \left(\theta_{\mathrm{G}} - \theta_{\mathrm{G}}^{\, \prime} \right) \\ \Delta \theta_{\mathrm{G}}^{\, \prime} &= \sin^{-1} \left[\frac{\mathrm{H}}{\rho} \sin \left(\theta_{\mathrm{G}} - \theta_{\mathrm{G}}^{\, \prime} \right) \right] \end{split}$$

If $\Delta\theta_{G}^{\prime}$ has not stopped varying return to Equation (6.1).

$$H_S = a_e H$$

 (λ_S) = the geodetic longitude of the sub-satellite point (+ indicates east of Greenwich and - west of Greenwich)

 $(\theta_{\rm D})$ = the geodetic latitude of the sub-satellite point (+ indicates north of the Equator and - south of the Equator)

(a_a) = radius of the earth in kilometers

(H_S) = the height of the satellite above and normal to the adopted ellipsoid.

Thus we have computed the longitude and latitude of the sub-satellite point, and the height of the satellite.

VII. RESULTS

Simulated Data

The multilateration program described herein has been tested using simulated data for the ATS-1 satellite. The epoch used was the 4th of April 1969 at 0 hours, 0 minutes, and 0 seconds.

Some of the orbital parameters were:

The test cases listed below were run using the three observations given below.

Observation Time

Tracking Station	yr.	mo.	day	hr.	min.	sec.	Range
Mojave, Calif.	69	4	4	0	37	0	38,133.6887 km.
Rosman, N. C.	69	4	4	0	37	0	40,633.4199
Toowoomba, Australia	69	4	4	0	37	0	39,518.6607

The true values of x, y, z as given by the program which simulated the data were:

$$x = 26,297.9477 \text{ km}$$
.

$$y = 32,944.5272$$

$$z = -573.1739$$

The initial values used for the three test cases were:

	<u>x</u>	<u>y</u>	<u>z</u>
Case 1	+28,701.7425 km.	+28,701.7425 km.	-4464.7155 km.
Case 2	+19,134.4950	+22,323.5775	-6314.3833
Case 3	+25,512,6600	+31,890,8250	-5 74.034 8

All the cases converged to the same values:

$$x = 26,298.1470 \text{ km}.$$

y = 32,944.3690

z = -573.1558

If we compare these values to the given values, we get:

$$\Delta x = -200 \text{ m}.$$

 $\triangle y = +158$

 $\Delta z = -18$

Where the difference is taken as the given value minus the computed value.

The sub-satellite point is then found to be:

Longitude = -141.66° Latitude = -0.784° Height of satellite = 35,779.31 km.

The program gave similar results when Cramer's method was used instead of a least squares procedure. For example, using Cramer's method for Case 1 gave the following results:

x = 26,298.1546 km. y = 32,944.3582 z = -573.1764 $\Delta x = -207 \text{ m.}$ $\Delta y = +169$ $\Delta z = +2$

Longitude = -141.660° Latitude = -0.784° Height of satellite = 35,779.92 km.

The largest error in the test cases was 207 meters. These test cases do not agree exactly because the program generating the simulated data and the multilateration program did not use the same sidereal time. These test cases were run before the trilateration method for computing the initial estimates of x, y, z had been incorporated into the multilateration program. Guided by these results, the program was then run for three cases using real satellite data.

Real Data

Case 4

The observations for this case were taken on October 1, 1969 by three ATS ground stations: Rosman, North Carolina; Mojave, California; and Toowoomba, Australia. Mojave was the prime or two-way delay station; whereas, Toowoomba and Rosman were four-way delay stations. Two-way delay means that the signal is sent from the station to the satellite and is then returned to the station. Four-way delay means that the signal is sent from station A to the spacecraft, from the spacecraft to station B, from station B to the satellite, and from the satellite to station A. Station A would be the master station in this case.

The three stations tracked the spacecraft during a ten minute span of time as illustrated in Figure 2. The data rate was one observation per second and each station ranged for about one minute each time it tracked.

- 2 Rosman
- (3) Toowoomba

Figure 2.

Some of the orbital parameters used are:

The initial values used for the inertial coordinates are:

x = +5740.3485 km. y = -41,458.0725z = -3507.9907

The results are then compared to the results obtained by the Refined World Map Program (Reference 6).

	Obs	ervation	<u>Time</u>	Satellite Position						
Program	hr.	min.	sec.	Long. (+E)	Lat. (+N)	HT				
ATS	3	47	56.00	-148.710°	484°	35782.0 km.				
\mathbf{WMAP}	3	48	0.00	-148.650	489	35787.0				
ATS	3	53	56.01	-148.734	536	35780.7				
WMAP	3	54	0.00	-148,655	537	35788.7				
\mathbf{WMAP}	4	41	0.00	-148.660	896	35789.0				
ATS	4	41	35.00	-148.779	822	35787.0				
WMAP	4	42	0.00	-148.660	903	35790.0				

Here, ATS refers to the multilateration program developed in this report.

The longitude agrees to within .1°, the latitude within .01° and the height within 10 kilometers. Some of the error is probably due to the delays in the ground equipment at the master station not being measured accurate enough.

Case 5

The observations for this case were taken on December 23, 1969 by the ATS ground stations: Rosman, Mojave, and Toowoomba. This time the stations made simultaneous observations. All the stations were therefore two-way delay stations. They give an initial estimate for x, y, z of

x = +21,934.0285 km. y = -35,990.6776z = -1103.2987

Below is the comparison of the results of the multilateration program (called ATS in the charts) with the ORB-1 and WMAP programs (Reference 6).

Observation Time

69

69

69

WMAP

WMAP

ATS

12

12

12

<u>Program</u>	yr.	mo.	<u>day</u>	<u>hr.</u>	min.	sec.		x			<u>y</u>		<u>z</u>	
ATS	69	12	23	0	22	0.02	25,6	77.727	5 km3	3,421	.9067	km.	-1124.1973	km.
ORB-1	69	12	23	0	22	0.00	25,6	83.770	3 -3	3416.	8086		-1125.5546	
ATS	69	12	23	0	23	1.02	25,8	26,062	3 -3	3,307	.2853		-1128.8897	
ORB-1	69	12	23	0	23	0.00	25,8	329.649	6 -33	3,304	.0089		-1130.0527	
Observation Time Satellite Position														
$\underline{Program}$	<u>yr</u>	<u>.</u> <u>m</u>	10.	day	hr.	<u>m</u> :	<u>in.</u>	sec.	Long. (+	E)	Lat.(+	<u>N)</u>	Ht	
ATS	69)]	12	23	0.	2	2	0.02	-149.340	0°	-1.53	8°	35783.8 km	n.

0.00

1.02

0.00

-149.327

-149.340

-149.327

-1.531

-1.545

-1.537

35784.0

35783.8

35784.0

The longitude agrees to within $.1^{\circ}$ the latitude within $.01^{\circ}$, and the height within 1 kilometer.

22

23

23

0

0

23

23

23

Case 6

The observations for this case were taken on February 20 and 21, 1970. The observations were taken simultaneously by the three tracking stations of Mojave, Kashima, and Toowomba.

Below is a comparison of the multilateration program (called ATS in the charts), with the TV-1, ORB-1, and WMAP programs.

Observation Time							Satellite Position			
Program	<u>yr</u> .	mo.	day	hr.	min.	sec.	<u>x</u> .	y	<u>z</u>	
ATS	70	2	20	4	40	30.26 +	14843.66km.	+39476.84k	m349.72km.	
TV-1	70	2	20	4	40	30.26 +	14844.79	+39476.42	-349.72	
ORB-1	70	2	20	4	40	30.00 +	14844.87	+39476.33	-350.27	
ATS	70	2	20	10	40	29.26 -	39487.29	+14695.89	+1642.31	
TV-1	70	2	20	10	40	29.26 -	39486.87	+14702.83	+1642.26	
ORB-1	70	2	20	10	40	30.00 -	39487.87	+14699.94	+1641.75	
ATS	70	2	20	17	10	30.25 -	9206.24	-41136.44	+120.00	
TV-1	70	2	20	17	10	30.25 -	9207.42	-41136.18	+120.00	
ORB-1	70	2	20	17	10	30.00 -	9207.20	-41136.14	+119.27	
ATS	70	2	20	21	10	28.28 +	31088.54	-28439.97	-1391.48	
TV-1	70	2	20	21	10	29.29 +	31087.26	-28438.56	-1391.55	
ORB-1	70	2	20	21	10	30.00 +	31096.58	-28436.10	-1392.39	
Observation							_	Satellite Position		
Program	<u>yr.</u>	mo.	day	hr.	mi	n. sec.	Long. (+E)	<u>Lat. (+N)</u>	Ht.	
ATS	70	2	20	4	40	30.20	6 -150.44°	48°	35798.6 km.	
TV-1	70	2	20	4	40	30.20	6 -150.44	4 8	35798.6	
WMA P	70	2	20	4	40	30.0	0 -150.43	47	35798.4	
ATS	70	2	20	10	4(29.20	6 -150.49	+2.23	35789.2	
TV-1	70	2	20	10	4(29.20	6 -150.49	+2.23	35789.2	
WMAP	70	2	20	10	40	30.0	0 -150.49	+2.23	35789.0	
ATS	70	2	20	17	' 10	30.2	5 -150.46	+0.16	35776.0	
TV-1	70	2	20	17	' 10	30.2	5 -150.46	+0.16	35776.0	
WMAP	70	2	20	17	' 10	30.0	0 -150.45	+0.16	35775.8	
ATS	70	2	20	21	. 10	28.2	8 -150.45	-1.89	35778.5	
TV-1	70	2	20	21	10	29.2	9 -150.45	-1.89	35778.5	
WMAP	70	2	20	21	1(30.0	0 -150.45	-1.89	35778.4	

The longitude agrees to within 0.1°, the latitude within .01°, and the height within 1 kilometer. The TV-1 and the multilateration programs did not give the same results, because the TV-1 programs used mean sidereal time and the multilateration program used apparent sidereal time.

From these results it can be seen that there is excellent agreement between the various position determination methods. The trilateration method has advantages over conventional orbit determination techniques in that it is a geometric solution and does not require a sophisticated force model, nor does it require a number of iterations to obtain an orbit as do conventional orbit determination techniques. Each position vector takes less than five seconds CPU time on the 360/91 when using the trilateration program. The time required by conventional orbit determination programs depends on the length of the arc needed to determine the orbit, the number of iterations necessary to converge, and the force model used. Some disadvantages of the described trilateration technique are; an orbit is not determined and therefore orbit prediction can not be made, and there must be mutual visibility by three stations capable of tracking almost simultaneously the particular satellite. For additional information or the future development of the trilateration technique the reader should refer to references 8 and 9.

VIII. CONCLUSION

From the results of the cases given in the previous section, it can be seen that the multilateration programsgives good results. The Multilateration, TV-1, ORB-1 and WMAP programs compared very favorably. The longitude always agreed to within .1 degrees, and the latitude always agreed to within .01 degrees. The height agreed to within 1 kilometer, except on the turnaround ranging case. A possible explanation for this discrepancy is that the measurements of the time delay in the ground equipment at the slave station is inaccurate. The results further indicate that spacecraft positions for synchronous satellites can be obtained using less computer time and less computer memory if one uses the multilateration instead of using conventional orbit determination techniques.

IX. ACKNOWLEDGMENT

The authors would like to express their appreciation to N. L. Bonavito, Dave Stewart, and Harvey Walden of the Trajectory and Dynamics Branch for their advice in the development of the multilateration program and this report.

X. REFERENCES

- Escobal, P. R., and Lange, D. M., "Trilatron (TV-1) Operational Trilateration Program Version 1 for Satellite Position Determination," Hughes Aircraft
 Company, NASA Contract NAS5-3823.
- 2. Escobal, P. R., "Methods of Orbit Determination," John Wiley and Sons, New York, July 1965.
- 3. Grenchik, Tom and Putney, Barbara, "A Review of Goddard Range and Range Rate System Measurements and Data Processing Techniques," Goddard X Document X-551-69-137, April 1969.
- 4. Zillig, Dave, "Data Formats of the Goddard Range and Range Rate System and the Application Technological Satellite Range and Range Rate System," Goddard X Document X-571-69-149, April 1969.
- 5. Walden, Harvey, "Orbital Prediction and Differential Correction Using Vinti's Spheroidal Theory for artificial Satellites," NASA Technical Note D-3803, March 1967.
- 6. Jones, Rosemary C., "AOPB Systems Manual, Program Description R104 Master Orbit Tape Routine," Goddard X Document X-542-66-291, February 1966.
- 7. Escobal, P. R., Cox, R., and Anzel, B. M., "Trilateration State Determination and Propagation Accuracy Study for Synchronous Satellites," Hughes Aircraft Company, Data Bank Report No. 1-4235, NASA Contract NAS-5-21554, December 1971.
- 8. "Explanatory Supplement to the Astronomical Ephemeris and The American Ephemeris and Nautical Almanac," prepared by the Nautical Almanac Offices of the United Kingdom and the United States of America, London: H. M. Stationery Office, 1961.
- 9. Escobal, P. R., Lange, D. M., and Johnson, R. H., "Trilateration and Position Prediction," Hughes Aircraft Company, NASA Contract NAS-5-21554, December 1971.

APPENDIX

Program Information

A. Operating Instructions for Multilateration Program

Below is an explanation of the data cards, with some typical values in parenthesis

- 1. Card #1 5 variables in the format (5E15.8)
 - a. f = the flattening coefficient of the earth (.33528919)
 - b. TOL = the tolerance that is used to determine when the least squares program has converged to a solution (.1 \times 10⁻⁸)
 - c. DELA = the size of the ambiguity in time in seconds (.125)
 - d. REARTH = the radius of the earth in kilometers (6378.165)
 - e. C = the speed of light in km./sec. (2.997925×10^5)
- 2. Card #2 7 variables in the format (2(I5, 5X), F5.1, I5, 5X, E15.8, 2I5)
 - a. NOOBS = the number of tracking stations being used in this run. The program with slight modification will handle up to 10 stations.
 (3)
 - b. NOPRST = the station number of the prime or two way delay station.

 If all stations are two way delay stations this number would be set to -1. (47)
 - c. DELTAT = the time increment in minutes at which the data points will be printed out in each time interval. (1)
 - d. NOPTS = the number of data points that are to be computed in each time interval. This option would override the value of DELTAT. This option is usually not used and the value is set to -1. (-1)

- e. EPSLON = the tolerance which is used to determine when the program has converged on the proper time (1.0×10^{-18}) .
- f. IMON = the month in which the observations begin (10).
- g. IDAY = the day of the month on which the observations begin (1)
- 3. Card #3 to card # (2 + NOOBS) 3 variables in the format (2I5, 5X, E15.8)
 - a. NUMST = the number of the tracking station (47).
 - b. NA = the number of ambiguities (2)
 - c. STNDEL = the station delay time in micro-seconds (1.75).
- 4. Card #(2 + NOOBS) to Card # (32 + NOOBS) 1 variable in the format (7X, E15.8). 30 cards total
 - a. ALAMDM = the hour angle of the first point of Aries at midnight
 Greenwich mean time in radians. The first card in this
 set contains the hour angle for the IMON and IDAY on
 card #2. Each subsequent card has the hour angle for the
 next day. As the program is presently set up 30 cards are
 required, however if there is data only on one day only
 the first card need be filled in the other 20 may be blank.
 If NOOBS on card #2 is 2 or less all 30 cards may be
 blank. (.16668687, value for Oct. 1, 1969, obtained
 from Reference 8.)

Last 4 cards give the coordinates of the four ATS tracking stations in the format (13X, E15.8, 1X, E15.8, 1X, F8.1).

- a. ALAMDE = the geodetic longitude of the tracking station in radians as measured positive eastward from Greenwich (+4.2430894)
- b. THETAD = the geodetic latitude of the tracking station in radians as measured positive north of the equator (+.61665814).
- c. ALT = the altitude of the tracking station in feet measured as positive above sea level (+3072.8).

Note: The name of the station is given in columns 3-8 (Mojave in the example given in a thru c above), but is not used in the program.

B. Program Flow Chart

The program is presently set up for the ATS satellites and must have the four tracking stations in the order given below.

- 1. Kashima, Japan
- 2. Mojave, California
- 3. Rosman, North Carolina
- 4. Toowoomba, Australia

If any other stations but these four stations are used the multilateration program has to be slightly modified, because the station numbers are hard coded in the program.

C. Multilateration Program

```
IMPLICIT REAL+8(A-H.O-Z.S)
      REAL MAXR, MAXRD, MAXXY, MAX, MIN
       INTEGER CC1,CC2,CC3,CC4,C1SAV,C2SAV,C3SAV,C4SAV,U,V
      REAL *8 OTIME, STID, OBSV, TRANOM, FICRP, OBCV
       INTEGER #4 ISATN, IOBN
      REAL *4 OBWT, COC, POC, SDFT, FNRRES, TMER, TCRV, ROBWT, RROBWT, AOBWT
       INTEGER +2 1ESN, IDRPN, 101, 1EF, ITT1, ITC1, 10C1
      DIMENSION A(10,13), AC(13), ALAMDM(30), CLMQI(10,3), CUEFF(13),
      1DELAY(10), DELR(10,1), CLTAQI(3,4), END(10), NDAY(12), NDEG(10),
     2NCMST(10), R(90), RCBS(10), STACCN(4,3), START(10), TYPE(10),
     3WT(1C), XT(1C), YT(1O), ZT(1O), RTV1(2OO, 3), TVTIME(2OO, 3),
     4111(2), STATNM(10), STDFIT(10), WTOB(10), DELOUT(2CO,10),
     5NSTAT(10), STOR(13), STADEL(100), DELDOD(200,10), NAMB(100)
      DIMENSION NAMBER(10)
      EQUIVALENCE (FIDRP. 111)
      NAMELIST/NAMI/N, NUMST, Y, NAMB, DELA, STNDEL, DELZW, DZWAY, DELAY
     1 , Y2, Y4
      NAMELIST/NAM2/N, NUMST, Y, NAMB, DELA, STNDEL, DEL2W, D2WAY, DELAY
     1 . Y2. Y4
      NAMELIST/NAM3/N, NUMST, Y, NAMB, DELA, STNDEL, DELZW, DZWAY, DELAY
     1 , Y2, Y4
С
      CORRECTION FOR LIGHT TIME AND AMBIGUITY REQUESTED
      INTEGER #2 IAMBRS
      DIMENSION IAMBRS(3)
      DATA IAMBRS/16,22,31/
     RANGE RR ANGLES CORRECTIONS TO BE MADE
      DATA TRANOM, FIDRP, OBSV, CBWT, COC, PCC, FNRRES, TMER, TCRV, IESN, IDRPN.
     110T, IEF, ITT1, ITC1, 10C1/9*0., 7*0/
  196 IOT
               = 1
               = 6378.165
      AE
      RADCEG = 57.2957795
      NDAY(1) = 31
      NDAY(2) = 28
      NDAY(3) = 31
      NDAY(4) = 30
      NDAY(5) = 31
      NDAY(6) = 30
      NDAY(7) = 31
      NDAY(8) = 31
      NDAY(9) = 30
      NDAY(10) = 31
      NDAY(11) = 30
      NDAY(12) = 31
C
C
      IF NCPTS = 1 OR > 1,, THE PROGRAM WILL COMPUTE A RANGE FOR THE
C
      NOPTS SPECIFIED. NO COMPUTATION OF INERTIAL COORDINATES OR
С
      OF SUB-SATELLITE POINT WILL BE MADE IN THIS CASE.
        NCPRST = -1 FOR THIS CASE. SET NOPTS = 0 FOR REGULAR CASE.
C
      IN THIS CASE THE PROGRAM WILL COMPUTE THE TIME COMMON TO ALL
      STATIONS AND COMPUTE RANGE, AND SUB-SATELLITE PUINT FOR THIS TIME
С
      AND CONTINUE TO COMPUTE AT SPECIFIED INTEGRALS OF TIME.
      REAC(5,199) F, TOL, DELA, REARTH, C, NCOBS, NOPRST, DELTAI, NOPTS,
     1 EPSLCN, IMON, IDAY
  199 FORMAT(5E15.8/2(15,5X), F5.1, 15, 5X, E15.8, 215)
      WRITE(6,5000) F, TOL, DELA, NOOBS, NOPRST, DELMIN, REARTH, C
      WRITE(6,5019)
 5C19 FORMAT(1HO, 37X, 17+TRACKING STATIONS)
      DO 195 I = 1, NOOBS
      REAC(5, 194) NUMST, NA, STNDEL
  194 FORMAT(215, 5x, E15.8)
      STNDEL = STNDEL * 1.0D-06
      WRITE(6,5020) NUMST, NA, STNDEL
```

```
5020 FORMAT(1HO,
    117H NO. OF STATION =, I5, 5X, 14H NO. OF AMB. = I5, 5X,
    216H STATION CELAY =, E2C.8, 2X, 4HSEC.//)
      STADEL(NUMST) = STNCEL
  195 NAMB(NUMST) = NA
      DELPIN = DELTAT
C
      IF NOPRST = -1. ALL STATIONS ARE TWO WAY DELAY STATIONS
C
C
      READ(5,200) (ALAMDM(I), I = 1, 30)
  200 FORMAT(7X, E15.8)
C
      REAC IN TRACKING STATION LOCATIONS
C
Ċ
  201 FORMAT(13X, E15.8, 1X, E15.8, 1X, F8.1)
      REAC. (5,201) ((STACCN(I,J), J = 1,3), I = 1,4)
              = 0
              = DELA / 8640C.C
      TEMP2
             = DELTAT / 1440.0
      DELTAT
              = 1
      NOTIM
      NOITER
              = 1
              = 0
      HI
      NOREAD = 0
      JJ .
              = 1
      IF(NOPTS) 3. 3. 4
             = NOOBS
    3 NK
      GO TO 5
              = 1
    4 NK
    5 DO 10 I = 1, NK
      NOREAD = NOREAD + 1
              = -1
      INDIC
      INDCT
             = -1
      REAC(19.END=8998) STIIM. FINTIM, NUMST, DATYP, NDGREE, COEFF,
     lisat, ROBHT, SDFT, STNAPE, FIDRP, IOCI
C
      THIS MEANS NO GATING IS DONE BY DODS, NOTICE THIS IS GOOD FOR
C
      RANGE ONLY, DO NOT USE IF RANGE RATE IS ALSO USED
Č
      I11(2) = I11(2) + 2
      NOMST(I) = NUMST
      IF(NCREAD - NOOBS) 6, 6, 7
              = 111 + 1
    6 111
      NSTAT(III) = NOMST(I)
     7 START(I) = STTIM
      END(I)
               = FINTIM
      TYPE(I) = CATYP
      NDEG(I) = NDGREE
       STATNM(I) = STNAME
       STDFIT(I) = SDFT
       WTOB(I) = ROBWT
              = NDEG(I) + 1
      KK
       DO 11 J = 1_0 KK
    11 A(I,J) = COEFF(J)
    12 IF(J - 13) 13, 10, 10
    13 J = J + 1
       0 = (L, 1)A
       GO TO 12
    10 WRITE(6,5001) I, START(I), END(I), NOMST(I), TYPE(I), NDEG(I),
      1(A(I,J), J = 1, 13)
```

```
5C01 FORMAT(1HO. 3HI = 13//
                  = E20.8//10+ END
                                        = E20.8//10H NOMST
     110H START
                  = E20.8//10+ NDEG
                                        = 15
                                                //10H A(1)
                                                              = E20.8//
     210H TYPE
                                        = E20.8//10H A(4)
                                                              = E20.8//
                  = E20.8//10F A(3)
     310H A(2)
                                        = E20.8//10H A(7)
                                                              = E20.8//
                  = E20.8//10H A(6)
     410H A(5)
                                        = E20.8//10H A(10)
                                                              = E20.8//
                  = E20.8//10F A(9)
     510H A(8)
                  = E20.8//10F A(12)
                                        = E20.8//10H A(13)
                                                              = E20.8//)
     610H A(11)
     GO TO 215
  139 INDCT
            = +1
      IF(NOPTS) 415, 415, 140
  140 M
              = 1
      ENDTIM = FINTIM
      IF(NCPTS - 2) 141, 142, 143.
             = STTIM + ((ENDTIM - STTIM) / 2.)
  141 T
      DELTAT = ENDTIM
      GO TG 25
  142 DELTAT = (FINTIM - STTIM) / 3.
             = DELTAT - TEMP3
      DELTAT
              = STTIM + DELTAT
      ENDTIM = FINTIM - (DELTAT / 2.)
      GO TO 25
  143 DELTAT = (ENDTIM - STTIM) / (NOPTS - 1.)
             = DELTAT - TEMP3
      DELTAT
              = STTIM
      GC TC 25
  415 BEGTIM = START(1)
      ENDTIM
             = END(1)
      DO 19 I = 2, NOOBS
      IF(START(I) - BEGTIM) 17, 17, 16
   16 BEGTIM = START(I)
   17 IF(ENC(I) - ENDTIM) 18, 19, 19
   18 \text{ ENDTIM} = \text{END(I)}
   19 CONTINUE
      IF(BEGTIM - ENDTIM) 490, 490, 405
      NO OVERLAP PERIOD FCUND
C
              = NCOBS + 1
  405 MM
      INDIC
              = + 1
      NOREAD = NOREAD + 1
      REAC(19, END=8998) STTIM, FINTIM, NUMST, DATYP, NDGREE, COEFF,
     LISAT, ROBWT, SOFT, STNAME, FICRP, TOCT
C
      THIS MEANS NO GATING IS DONE BY CODS, NOTICE THIS IS GOOD FOR
C
      RANGE ONLY, DO NOT USE IF RANGE RATE IS ALSO USED
C
C
      111(2) = 111(2) + 2
      START(MM) = STTIM
      END(MM)
                = FINTIM
      TYPE(MM)
               = CATYP
      NOMST(MM) = NUMST
      STATHM(MM) = STNAME
      NDEG(MM) = NDGREE
      STDFIT(PM) = SDFT
      WTOB(MM) = ROBWT
KK = NDEG(MM) + 1
      DO 451 J = 1, KK
  451 A(MM,J) = COEFF(J)
  452 IF(J - 13) 453, 450, 45C
              = J + 1
      \Delta(MP_*J) = 0.
      GO TO 452
  450 WRITE(6,5001) MM, START(MM), END(MM), NOMST(MM), TYPE(MM),
     INDEG(PM), (A(MP,J), J = 1, 13)
      00 \ 435 \ I = 1, MM
      IF(ENC(I) - ENDTIM) 431, 431, 435
```

```
431 START(I) = START(PM)
      END(I)
             = END(MM)
      TYPE(I)
              = TYPE(MM)
      NOMST(I) = NCMST(PM)
      STATNM(I) = STATNM(PM)
      NDEG(I) = NDEG(MM)
      STOFIT(I) = STOFIT(PM)
      WTOB(I) = WTOB(MM)
      DC 432 J = 1, 13
  432 \ \Delta(I,J) = \Delta(FF,J)
      GO TO 415
  435 CONTINUE
  490 IF(NOREAD - (2 * NOCBS)) 251, 210, 210
  251 DO 252 III = 1, NCOBS
  252 NSTAT(III) = NOMST(III)
  210 If(INDIC) 253, 215, 215
  215 DO 250 JJJ = 1, NOOBS
      DO 216 III = 1, NOOBS
      IF(NGMST(IIII) . EQ. NSTAT(JJJ)) GO TO 220
  216 CONTINUE
  220 IF(III.EQ.JJJ) GO TO 25C
      TEMP20 = START(JJJ)
      TEMP21 =
                   END(JJJ)
      TEMP22 =
                  TYPE(JJJ)
             = UCULITEMON = CLULIMATATE =
      TEMP23
      TEMP24
                  NDEG(JJJ)
      TEMP25 =
      TEMP26
             = STCFIT(JJJ)
      TEMP27
             =
                 hTOB(JJJ)
      DO 270 KKK = 1, 13
  270 \text{ STOR}(KKK) = A(JJJ, KKK)
     START(JJJ) =
                   START(III)
       = (LLL)GN3
                      ENC(III)
      TYPE(JJJ) =
                     TYPE(III)
     NOPST(JJJ) =
                    NOPST(III)
    STATNM(JJJ) = STATNM(III)
      NCEG(JJJ) =
                    NCEG(III)
    SIDFIT(JJJ) = SIDFIT(III)
      WTOB(JJJ) = WTOB(III)
    DO 277 KKK = 1, 13
277 A(JJJ, KKK) = A(III, KKK)
     START(III) = TEMP2C
       END(III) = TEMP21
      TYPE(III) = TEMP22
     NOMST(III) = TEMP23
    STATNM(III) = TEMP24
      NCEG(III) = TEMP25
    STDFIT(III) = TEMP26
      WTCB(III) = TEMP27
    DO 276 KKK = 1, 13
276 A(III, KKK) = STOR(KKK)
250 CONTINUE
    DO 260 I = 1. NK
260 WRITE(6,5001) I, START(I), ENC(I), NOMST(I), TYPE(I), NDEG(I),
   1(A(I_{+}J)_{+}J = 1_{+}13)
    IF(INCCT) 139, 139, 253
253 T
            = BEGTIM
            = 1
            = NOOBS
    IF(NOPRST) 25, 15, 15
 15 IF(NCMST(N) - NOPRST) 2C, 25, 20
 20 N
            = N - 1
    IF(N) 30, 30, 15
 30 WRITE(6,5002)
```

```
5002 FORMAT(1HO, 50X, 33F NO THO WAY RANGING STATION FOUND//)
     GC TC 9C00
  25 NUMST
           = NOPST(N)
     NAMBPR(N) = NAMB(NUMST)
     TEMP3
           = NAMB(NUMST) * TEMP2
             = T + .5 * TEMP3
     TD
     NUMST
            = NOMST(N)
     STNCEL = STADEL(NUMST)
     KOUNT
             = 1
    NZWAY
             ≠ N
     GO TO 80
 31 CALL CHEBY(ND, AC, TD, Y, XST, XEND)
            = Y * 1.0D-C6
    Y 2
             = Y
    YSAVE
    TEMP1
            = .5 * Y / 8640C.
    DELCOD(M,N) = TEMP1
    TP = TD - .5 * TEMP3 + TEMP1
IF(DABS(T / TP - 1.C) - EPSLON) 40, 40, 35
 35 TD
            = TD - TEMP1
    GO TO 31
 40 DELAY(N) = Y + NAMB(NUFST) * DELA + STNCEL
    DEL 2W
             = Y + NAMB(NUMST) * DELA - STNDEL
    DELCUT(M,N) = Y - STNDEL
    D2WAY = Y - STNDEL
    WRITE(6,NAM1)
            = TP
    IF(NCPRST) 42, 41, 41
 42 IF(NOPTS) 26, 26, 65
            = N - 1
    IF(N) 65, 65, 25
            = NCCBS
 41 N
 43 IF(NOMST(N) - NOPRST) 5C, 45, 50
            = N - 1
    IF(N) 65, 65, 43
 50 TEMP3 = 0.5 * TEMP2 * (NAMB(NOPRST) + NAMB(NUMST))
    TD
            = T + TEMP3
    NUMST
            = NCMST(N)
    NAMBPR(N) = NAMB(NUMST)
   STNDEL = STADEL(NUMST)
    KOUNT
            = 2
 80 NSAV
            = N
    IF(NCPTS) 77, 77, 76
 76 N
            = 1
 77 ND
            = NDEG(N)
   XST
            = START(N)
   XEND
            = END(N)
   KK
            = ND + 1
   DO 81 K = 1, KK
81 AC(K)
           = A(N,K)
            = NSAV
   GO TO (31, 51), KOUNT
51 CALL CHEBY(ND, AC, TD, Y, XST, XEND)
           = Y * 1.00-C6
   Y4
   YSAVE
   TEMP1
           = .5 * Y / 8640C.
   DELCOD(M,N) = TEMP1
   IF(Y4 - Y2) 52, 52, 55
            = TD + .5 \pm TEMF2
53 CALL CHEBY(ND, AC, TD, Y, XST, XEND)
           = Y * 1.0D-C6
   YSAVE
   DELAY(N) = Y + (NAMB(NUFST) + NAFB(NOPRST)) + DELA - STNDEL + DELA
   TEMP1
           = .5 * Y / 8640C.
   DELOOD(M,N) = TEMP1
   WRITE(6,NAM3)
   IF(Y4 - Y2) 54, 54, 55
```

```
= TD - TEMP3 + TEMP1 - .5 * TEMP2
  54 TP
    GO TO 56
           = TD - TEMP3 + TEMP1
  55 TP
    DELAY(N) = Y + (NAMB(NUMST) + NAMB(NCPRST)) * DELA - STNCEL
  56 IF(CABS(T / TP - 1.C) - EPSLON) 60, 60, 57
  57 TD
            = TC - TEMP1
    GO TC 51
  60 DELAY(N) = DELAY(N) - DEL2W
    DELCUT(M,N) = Y - D2WAY - STNDEL
            = N - 1
     IF(N) 65, 65, 43
  65 IF(NCPTS) 82, 82, 83
 82 DC 66 N = 1, NOCBS
            = DELAY(N) + C / (2.0 * REARTH)
    R(N)
    RTV1(M,N) = R(N) * REARTH * 100C.0
     TVTIME(M,N) = T
  66 ROBS(N) = R(N) * R(N)
    GO TO 85
            = DELAY(N) + C / (2.0 + REARTH)
  83 R(JJ)
    RTV1(M,N) = R(JJ) * REARTH * 100C.0
     TVTIME(M,N) = T
  85 IF(NCPTS) 90, 90, 145
  90 IF(NCOBS - 3) 145, 91, 91
 91 I
    NLSCIT
    WT(1)
            = ~ 1.0
    CALL READCL(SYRE, SCNTH, SDAYY, SHOURS, SUETS, SSECCN, KK, T,SE)
    KYR
            = SYRE
    KMON
            = SONTH
    KDAY
            = SDAYY
    KHR
            = SHOURS
    KMIN
            = SUETS
     SECS
            = SSECON
            = YP
202 IF(NCMST(I) - 47) 68, 67, 68
 67 NOSTN = 2
    GO TO 75
 68 IF(NCMST(1) - 58) 70, 69, 70
  69 NOSTN = 3
    GO TO 75
  70 IF(NCMST(I) - 66) 72, 71, 72
  71 NOSTN
           = 4
    GO TO 75
  72 IF(NCMST(1) - 68) 74, 73, 74
  73 NCSTN
    GO TO 75
  74 WRITE(6, 5003) NOMST(I)
5CO3 FORMAT(1HO, 11HSTATION NO., 2X, 13, 2X, 58HIS NOT INCLUDED IN THE
    1STATION CONSTANTS, PRCGRAM HALTEC.//18X, 65HCHECK THE STATION NO.,
    20R ACC NEW STATION TO PROGRAM AND TRY AGAIN)
    GC TC 9COO.
  75 MDAY
             = KDAY
     IF(KMON - IMON) 100, 110, 100
             = MCAY + NDAY (IPON)
 100 MDAY
             = MDAY - IDAY + 1
 110 LROW
     ALAMCO
            = ALAMDM(LRCW)
     ASECS
             = 3600 * KHR + 60 * KMIN
     ASECS
             = ASECS + SECS
     DELT
             = ASECS / 360C.C+CO
     ALAMEE
            = STACON(NOSTN. 1)
     THETAD
            = STACON(NOSTN,2)
             = STACON(NOSTN, 3)
     ALT
     SNTFED = DSIN(THETAD)
     CSTHED = DCCS(THETAD)
     CAPC
             = CSTHED ** 2 + ((1. - F) * SNTHED) ** 2
     CAPC
             = 1.0 / DSQRT(CAPC)
```

```
CAPS
               = CAPC * (1.0 - F) ** 2
               = ALT * 4.77865E-C8
      ALT
      TEMP
               = (CAPS + ALT) / (CAPC + ALT)
               = TEMP * SNTHED / CSTHED
      TEMP
      THETAG
               = DATAN(TEMP)
      SNTHEG
              = DSIN(THETAG)
      CSTEEG
              = DCOS(THETAG)
      DELTA
               =ALAMDO + ALAMDE + DELT + 2.625161333D-01
      SNDELT
              = DSIN(DELTA)
      CSDELT
              = DCOS(DELTA)
      RHOCAP
              = (CAPS + ALT) ** 2
      RHOCAP
              = RHOCAP * SNTHED ** 2 + ((CAPC + ALT) * CSTHED) ** 2
      RHOCAP
              = DSQRT(RHOCAP)
C
      COMPUTATION OF INERTIAL CCORDINATES OF OBSERVATION POINT
C
C
      XM
              = RHCCAP * CSTHEG * CSDELT
      YM
              = RHOCAP * CSTHEG * SNDELT
              = RHOCAP * SNTHEG
      ZM
      XT(I)
              = XM
      YT(I)
              = YP
      ZT(I)
              = ZM
              = 1 + 1
      IF(I - NOOBS) 202, 202, 116
      IF(NOITER - 1) 118, 118, 400
  118 CALL COMP(XT, YT, ZT, RCBS, XOF, YOF, ZOF)
              = XCF
      X
              = YOF
              = 20F
      WRITE(6,500C) F, TOL, DELA, NCOBS, NOPRST, DELMIN, REARTH, C
 5000 FORMAT(1H1, 50X, 25H ATS EXPERIMENTAL RANGING//54X,
     116HINPUT PARAMETERS//4X, 20HEARTH'S FLATTENING = E15.8, 5x,
     223HCONVERGENCE TOLERANCE = E15.8, 5X, 6HDELA = E15.8,
     32X, 3HSEC//4X, 27HNO. OF OBSERVING STATIONS = 15, 5X,
     422HNC. CF PRIME STATION = I5, 5x, 8HDELTAT = E15.8, 2x, 4HMINS//
518H RADIUS OF EARTH = E20.8, 2x, 3HKM., 5x, 16HSPEED OF LIGHT =
     6E20.8, 2X, 10HKM. / SEC.//)
      WRITE(6,5010) X, Y, Z
5C10 FORMAT(1HO.
     166X, 3HX = E15.8//1CX,
     259HINITIAL ESTIMATE OF INERTIAL COORDINATES OF SATELLITE
     3 E15.8//66X, 3HZ = E15.8
      WRITE(6, 5005)
5005 FORMAT(1H1, 50X, 6HCUTPLT//
     1 9X, 4HTIME, 26X, 19HSUE-SATELLITE POINT//1X,
     222HYR MO DAY HR MIN SEC, 6x, 13HLCNGITUDE(+E), 2x,
     324HLATITUDE(+N) HEIGHT(KM)//)
 400 CLMCI(I,1) = X - XT(I)
                  = Y - YI(I)
     CLMCI(1,2)
                  = 2 - 2T(I)
     CLMQI(1,3)
     RCOMP
              = CLMQI(I_11) ** 2 + CLMQI(I_2) ** 2 + CLMQI(I_3) ** 2
      RC2
              = DSGRT(RCOMP)
      DELR(I, 1) = .5 * (ROBS(I) - RCOMP)
      IF(I - NOOBS) 120, 130, 130
  120 I = I + 1
      GO TO 400
  130 CALL GLSP(CLMQI, NOCBS, 3, DELR, 1, DLTAQI, RESID, SUM, WT, 0,
     1STDERR)
              = X + DLTAQI(1,1)
              = Y + DLTAQI(2,1)
      Z
              = Z + DLTAQI(3,1)
              = X + X
      XS
      YS
      ZS
              = Z + Z
      NLSQIT
              = NLSQIT + 1
      SUM
              = 0.
      DO 300 I = 1. NOCBS
```

```
= SUM + .(2.C * CELR(I,1)) ** 2
  300 SUM
      FIT
             = DSQRT(SUM / NCOBS)
      I = 1
      IF(NLSQIT - 20) 350, 350, 8000
  350 IF(FIT - TOL) 500, 500, 400
      BEGIN COMPUTATION OF SUE-SATELLITE POINT
С
  500 RHOS
              = XS + YS + ZS
              = 0.0
      1
      DTHEG
              = 0.000
              = F * (2.0DC - F)
      TES
      T2
              = (1 - F) ** 2
      RHO
              = DSQRT(RHOS)
      SNTFEG = Z / RHO
      CSTHEG = DSGRT((XS + YS) / RHOS)
      TEMP1 = RHG * CSTHEG
      CSDELT = X / TEMP1
      SNDELT = Y / TEMP1
      DELTA = DATAN2(SNDELT, CSDELT)
      XLONG = DELTA - ALAMDO -. 2625161333D+00 * DELT
              = CATAN(Z/DSQRT(XS + YS))
      DEL
  501 THETAG
              = DEL - DTHEG
              = 1 + 1
      1
      T10
              = DCOS(THETAG)
      T11
              = T10 * T10
              # DSQRT((1.CDC - TES) / (1.000 - TES * T11))
      RC
      XLAT
              = DATAN(DTAN(THETAG) / T2)
      T12
              = XLAT - THETAG
      T13
              = DSIN(T12)
              = T13 * T13
      T14
              = DCOS(T12)
      T15
      HT
              = DSQRT(RHOS + RC + RC + T14) - RC + T15
      T20
              = HT * T13/ RHO
      DTHEG
              = DARSIN(T20)
      IF(I.LT.10) GO TO 5C1
      XLAT
             = XLAT * RACDEG
              = XLONG * RADDEG
      XLONG
      ΗŤ
              = HT * AE
  520 IF(DABS(XLONG) - 18C.O) 510, 510, 700
  700 IF(XLONG) 701, 702, 702
  701 XLONG
              = XLCNG + 360.0
      GO TO 510
  702 XLONG
             = XLDNG -36C.0
  510 WRITE(6,5004) KYR, KMCN, KDAY, KFR, KMIN, SECS, XLONG, XLAT, HT
 5CO4 FORMAT(1HO, 12, 1x, 12, 2x, 12, 1x, 12, 2x, 12, 2x, F5.2, 5x, F8.3,
     17X, F7.3, 4X, F10.2)
      WRITE(6,9035) X, Y, Z
 9C35 FORMAT(1HO, 4H X = E20.8//4H Y = E20.8//4H Z = E20.8)
             = T + DELTAT
  145 T
      NOITER = NOITER + 1
      ΥP
              ≠ Y
              = M + 1
      JJ
              = JJ + 1
      IF(T - ENDTIM) 150, 150, 9000
  150 IF(NOPTS) 14, 14, 25
 9000 IF(NCPTS) 170, 170, 160
  160 N
              = N + 1
      JJ
              = 1
      IF(N - NOOBS) 5. 5. 165
  165 N
              = 1
  170 NTOT
              = M - 1
      WRITE(9,1000) NTOT
      WRITE (6,1000)NTDT
 1000 FORMAT(15)
```

```
8999 M
         WRITE(9,1001)(RTV1(P,NN), NN = 1, NOOBS)
         WRITE(6,1001)(RTV1(M,NN), NN = 1, NOOBS)
         WRITE(9,1001)(TVTIME(P,NN), NN = 1, NOOBS)
         WRITE(6,1001)(TVTIME(M,NN), NN = 1, NCOBS)
    1CO1 FORMAT(3D25.15)
         IF(F - NTOT) 8999, 9010, 9010
    9C10 DO 9C50 M = 1, NTCT
         DO 9050 L = 1, NOCBS
   C
   C
         CONVERT RANGE MEASUREMENTS TO DUL UNITS
   C
         TORN
                 = 10BN + 1
         ROUT
                 = RTV1(M,L) * 1.0C-07
         TIME
                 = TVT[ME(M,L)
         T 30
                     (NAMBPR(L) * DELA) / (2.0D0 * 86400.0D0)
                 = TIME + T3C + CELDOD(M.L)
         TIME
         IF(L.NE.N2WAY) TIME = TIME + T30 - RTV1(M,N2WAY) / (1000.0 * C *
                                86400.0)
         CALL READCL(SYRE, SCNTH, SDAYY, SHOURS, SUETS, SSECON, KK, TIME,
        ISE)
                 = SYRE
         KYR
         KMON
                 = SCNTH
         KDAY
                 = SDAYY
         KHR
                 = SHOURS
         KMIN
                 = SUETS
         SECS
                 = SSECON
         IF(CFLOAT(KYR/4) - CFLOAT(KYR) / 4.000) 94, 92, 94
      92 NCAY(2) = 29
      94 NODAY
                 = 0
         LL
                 = KMON - 1
         DO 95 II = 1, LL
      95 NCDAY
                 = NCCAY + NCAY(II)
         NODAY
                 = NODAY + KDAY
                 = (KYR - 58) + 365 + ((KYR - 1) / 4 - 14) + NGDAY + 104
         NSJES
                 = 100.00 * (DFLCAT(NSJDS) + UFLOAT(KHR) / 24.00
         SUDS
                    + DFLCAT(KMIN) / 1440.CO + SECS / 86400.CO)
         OBCV=0.CO
         RCBWT
                 = WTCB(L)
         STNAME
                = STATNM(L)
                 = STDFIT(L)
         SDFT
    9050 WRITE (29) SJCS, STNAME, RCUT , TRANCM, FIDRP, OBCV, ISAT, IOBN, ROBWT, COC,
        1POC, SDFT, FNRRES, TMER, TCRV, IESN, ICRPN, IOT, IEF, ITTI, ITCI, 10C1, ICCI
         GO TO 5
    8COO WRITE(6,3050)
    3C50 FCRMAT(1HO, 45X, 31H PRCGRAM HALTED, NO CONVERGENCE)
    8598 REWIND 29
         WRITE (6,1300)
    1300 FORMAT ('10UT', 19X, 'STNAME
                                        OBSV',16X,'FEEDBACK
                                                               CORR VAL*,
        17x, 'SAT NO, OB NO, OB hT', 8x, 'ST. DEV. CBTP ECFG OCI')
     CO 1302 J=1,32000
     REAC (29, ENC=5210) SJDS, STNAME, ROUT, TRANOM, FIDRP, OBCV, ISAT, IOBN,
    10BWT,COC,POC,SDFT,FNRRES,TMER,TCRV,IESN,IDRPN,IOT,IEF,ITTI,ITCI,
    21001
1302 WRITE (6,1301) SJDS, STNAME, RCUT, [11(1), [11(2), OBCV, [SAT, [OBN,
    10BWT, SDFT, ICT, IEF, ICCI
1301 FORMAT {1X,D20.12,1x,A8,1x,D20.12,1X,215,1X,D14.6,1X,17,
    11x,C12.4,1x,C12.4,1x,12,1x,12,1x,16)
5210 STOP
     END
```

0583 CARDS

```
C
      SUBROUTINE COMP
      SUBROUTINE COMP(XT, YT, ZT, ROBS, XOF, YOF, ZOF)
      IMPLICIT REAL *8(A-4, J-2, $)
      REAL*8 LAMBDA
      DIMENSION X(3),Y(3),Z(3),XO(2),YO(2),ZO(2),RO(3,2),RO2(2),CHECK(2)
     1, XT(10), YT(10), ZT(10), ROBS(10), R(3,3), RHO(3), R2(3),
     2 RHON(3,3)
      DO 25 1=1.3
      R(1,1) = -XT(1)
      R(2,I) = -YI(I)
      R(3,1) = -ZT(1)
      RHO(I) = DSQRT(ROBS(I))
      X(I) = R(1, I)
      Y(1)=R(2.1)
   25 Z(I)=R(3,I)
      DO 35 I=1.3
   35 R2(I)=DOT(R(1,I),R(1,I))
      E21=.5D0*(RHO(2)**2-RHO(1)**2-(R2(2)-R2(1)))
      E31=.500*(RHO(3)**2-RHO(1)**2-(R2(3)-R2(1)))
      DELTA1=(Z(3)-Z(1))*(Y(2)-Y(1))-(Z(2)-Z(1))*(Y(3)-Y(1))
      A=({X(2}-X(1))*(Y(3)-Y(1))-(X(3)-X(1))*(Y(2)-Y(1)))/DELTA1
      B=(E31*(Y(2)-Y(1))-E21*(Y(3)-Y(1)))/DELTA1
      DELTA2 = - DELTA1
      C=((X(2)-X(1))+(Z(3)-Z(1))-(X(3)-X(1))+(Z(2)-Z(1)))/DELTA2
      D=(E31*(Z(2)-Z(1))-E21*(Z(3)-Z(1)))/DELTA2
      EPS1=A*A+C*C+1.DO
            =2.D0*(A*B+C*D+X(1)+C*Y(1)+A*Z(1))
      EPS2
             =B*B+D*D+2.JO*D*Y(1)+2.DO*B*Z(1)+R2(1)-RHO(1)**2
      EPS3
           RAD
      XO(1)=(-EPS2+DSQRT(RAD))/(2.D0*EPS1)
      XO(2)=(-EPS2-DSQRT(RAD))/(2.D0*EPS1)
      DO 30 I=1.2
      YO(1)=C*XO(1)+D
      ZO(1)=A*XO(1)+B
      RO(1,1) = XO(1)
      RO(2, I) = YO(I)
      RO(3,1)=20(1)
      XOF=X0(1)
      YOF=YO(I)
      ZOF=ZO(I)
      DO 75 K=1,3
      DO 75 J=1,3
   75 RHON(J,K)=R(J,K)+RO(J,I)
      IF(DOT(RHON,R)/(DSQRT(R2)*RHO(1)).LE.O.DO) RETURN
   30 CONTINUE
      RETURN
      END
CDOTT
      FUNCTION DOT(A.B)
      IMPLICIT REAL+8(A-H,O-Z,$)
      DIMENSION A(3),B(3)
      DOT=0.DO
      DO 1 I=1.3
    1 DOT=DOT+A(I) +B(I)
      RETURN
                                                                        0058 CARDS
      END
```

```
C
      SUBROUTINE CHEBY
C
      SUBROUTINE CHEBY(NO.C.XP,Y,XF,XL)
C
      IMPLICIT REAL #8(A-1, )-Z)
      DIMENSION C(13)
       X= 2.D0*(XP-XF)/(XL-XF) -1.D0
       TO=1.00+0
       T1=X
       Y=C(1) * TO+C(2) * T1
       IF (ND.LT.2) RETURN
       NT=ND+1
       DO 10 K=3,NT
       TN=2.0+X+T1-T0
        Y=Y+C(<)*TV
        TO=T1
                                                                          2019 CARDS
     13 T1=TN
        RETURN
        END
        SUBROUTINE DOT
  С
        IMPLICIT REAL*8(A-4,0-2,5)
        DIMENSION A(3),B(3)
        0C.0=10G
         00 1 1=1.3
       1 DOT=DOT+4(1)*9(1)
         RETURN
                                                                            0013 CARDS
         END
   //OBJECT DD *
   //OBJECT DD *
    C
          SUBROUTINE READCL
          SUBROUTINE READCL (SYRE, SONTH, SDAYY, SHOURS, SUETS, SSECON,
    C
    C
          1KK, SSUNA, SE)
           IMPLICIT REAL+8(A-4,0-2,$)
                                                                                FCP70010
           DIMENSION YM(28), YJ(28), OM(13)
           DATA OM/31.D0,28.D0,31.D0,30.D0,31.D0,30.D0,31.D0,30.D0,
           DATA YM/58.D0,59.D0,60.D0,61.D0,62.D0,63.D0,64.D0,65.D0,66.D0,
     C
          131.00,30.00,31.00,0.00/
          167.D0,68.D0,69.D0,70.D0,71.D0,72.D0,73.D0,74.D0,75.D0,76.D0,
          277.D0,78.D0,79.D0,80.D0,81.D0,82.D0,83.D0,84.D0,85.D0/
            DATA YJ/36203.DO. 36568.DO. 36933.DO. 37299.DO. 37664.DO. 38029.DO.
           138394.D0.38760.D0.39125.D0.39490.D0.39855.D0.40221.D0.40586.D0.
           240951.D0,41316.D0,41682.D0,42047.D0,42412.D0,42777.D0,43143.D0,
     С
           240771.000,4171.000,41002.000,4204.000,44969.00,45334.00,45699.00,
                                                                                 FCP70020
           446065.DO/
                                                                                  FCP70030
            SUNA=SSUNA
                                                                                  FCP70040
             E=+1.D3
                                                                                  FCP70070
             1=1
             IF (YJ(1)-SUNA)67,67,12
          12 HRITE (6,301) SUNA ,YJ(1),YJ(28)
                                                        = + , F20 . 4, + RANGE = + ,
         301 FORMAT ( * OUTSIDE CALENDAR RANGE. MJD
            1F20.5. 13 1.F20.5)
```

77 1

```
FCP70080
     IF (YJ(28)-SUNA)12,68,68
67
                                                                             FCP70090
68
     1=2
                                                                             FCP70100
71
     IF (YJ(1)-SUNA+.5D3169,70,70
                                                                              FCP70110
69
     I = I + 1
     GO TO 71
                                                                             FCP70130
70
     YRE=YM(I-1)
                                                                              FCP70140
     STUNM=SUNA-YJ(I-1)
1 00
                                                                              FCP70150
     KSUNM=SUNM
     SUNM1=KSUNM
                                                                              FCP70160
                                                                              FCP70170
     IYRE=YRE+.01D0
     IF(MOD(IYRE,4)) 77,78,77
                                                                              FCP70190
     DM(2)=29.00
78
     GO TO 105
77
     DM(2)=28.D0
                                                                              FCP70210
                                                                              FCP70220
105
     I = 1
                                                                              FCP70230
     SM=DM(I)+1.D0
                                                                              FCP70240
73
     IF (SM-SUNM)81,81,72
                                                                              FCP70250
     I = I + 1
81
                                                                              FCP70260
      IF (I-13)210,72,210
                                                                              FCP70270
     SM=SM+DM(I)
210
     GO TO 73
     SD=SUN4-(SM-OM(I))+1.D0
                                                                              FCP70290
72
                                                                              FCP70300
     DNTH=I
                                                                              FCP70310
201
     KSD=SD
     DAC =
             SD
                                                                              FCP70320
     DAYY=KSD
     SDAC=DAC
      SDAC=IDINT(SDAC)
     DDAC=SDAC
      SD=DAC-DDAC
      IF (SD)220,221,221
                                                                              FCP70340
                                                                              FCP70350
220
     SD=1.D0+SD
                                                                              FCP70360
221
     HDUR=SD+24.DO
                                                                              FCP70370
      KHOUR=HOUR
                                                                              FCP70380
      HOURS=KHOUR
                                                                              FCP70390
      UE= (HOUR-HOURS
                                 1*60.DO
                                                                              FCP70400
      KUE=UE
                                                                              FCP70410
      UETS=KUE
                                                                              FCP70420
      SECON=(UE-UETS) *60.DO
      IF (ONTH)207,208,207
                                                                              FCP70430
                                                                              FCP70440
208
     DNTH=12.D0
      CONTINUE
207
  99 SYRE=YRE
      HTMC=HTMO2
      SDAYY=DAYY
      SHOURS=HOURS
      SUETS=UETS
      SSECON=SECON
      SSUNA=SUNA
      SE=E
      RETURN
                                                                  FCP71430
      END
                                                                            0080 CARDS
  SUBROUTINE GLSP
  SUBROUTINE GLSP(A,MM,NN,B,IPP,X,U,SUM,WT,INVRS,STDERR)
                                                                                005
  IMPLICIT REAL*8 (A-H, O-Z)
  DIMENSION A ( 10,3), B ( 10,1), X (3,4), U ( 10,1), SUM (4),
1 W (3,4), WT ( 10), STDERR (3)
  MM=P
                                                                                800
  V=NN
                                                                                009
  IP=IPP
                                                                                010
  INVRSE = INVRS
                                                                                011
  AX=B+NJRMAL EQUATIONS+A IS RECTANGULAR MATRIX, WITH M ROWS+N COLUMNS
                                                                                012
  WX=W1 , NEW SET OF VORMAL EQUATIONS, W=TR(A) *A ,W1= TR(A) *B..
TO FORM MATRIX W ,WITH N ROWS AND N COLUMNS. (TR= TRANSPOSE)
                                                                                013
                                                                                014
```

C

С

C

С

```
WT = -1. MEANS NO WEIHGTS IN PROG. ASSIGN WEIGHTS = 1. STDERR = STANDARD ERRORS OF UNKNOWNS ( X ).
                                                                                        015
                                                                                        016
 INVRSE = 1. MEANS STD. ERRORS ARE CALCULATED.
                                                                                        017
 INVRSE = 0. MEANS NO CALCULATIONS OF STD. ERRORS OF ( X ) ********
                                                                                        018
      KK=N+1
                                                                                        019
      IF(M-N) 80,83,81
                                                                                        020
  81 DO 5 J=1.N
                                                                                        021
      DO 5 JJ=1,N
                                                                                        022
                                                                                        023
      W(J,JJ) = 0.
      IF (WT(1)) 611, 622, 622
                                                                                        025
   NO WEIGHTS CASE
611 DO 51 I = 1.M
                                                                                        026
      M(J+JJ) = M(J+JJ) + \Delta(I+J) + \Delta(I+JJ)
                                                                                        027
      GO TO 5
                                                                                        028
   WEIGHTS ARE PRESENT
                                                                                        029
622 DD 52 I=1.M
                                                                                        030
      (I)TW + (LL_{*}I)A + (L_{*}I)A + (LL_{*}L)W = (LL_{*}L)W
                                                                                        031
52
                                                                                        032
5
      CONTINUE
      TO FORM MATRIX WI , WHICH IS STURED IN N+1 TO N+P COLUMNS OF W. WI , WITH N ROWS AND IP COLUMNS.
                                                                                        033
                                                                                        034
      IF ( INVRSE ) 201,203,201
                                                                                       0035
      KIP = IP
203
                                                                                        036
      GD TO 200
                                                                                        037
201
      KIP = 1
                                                                                        038
      DD 8 K = 1, KIP
                                                                                        039
200
      DO 7 J=1.N
                                                                                        040
      W(J,KK) = 0.
                                                                                        041
      IF (WT(1)) 612, 623, 623
612 DO 511 I=1.M
                                                                                        043
511 W(J,KK) = W(J,KK)+A(I,J)* B(I,K)
                                                                                        044
                                                                                       045
      GO TO 7
623 DO 522 I= 1,M
                                                                                       046
    W(J_*KK) = W(J_*KK) + A(I_*J) + B(I_*K) + WT(I)
522
                                                                                       047
      CONTINUE
                                                                                       048
  8
     KK = KK + 1
                                                                                       049
      GO TO 106
                                                                                       050
  83 DO 12 I=1.N
                                                                                       051
      IF (WT(1)) 613, 624, 624
     DO 512 J=1.N
                                                                                       053
613
     W(I,J) = A(I,J)
                                                                                       054
      30 TO 12
                                                                                       055
624
     DO 523 J=1.N
                                                                                       056
523
     \mathsf{H}(\mathsf{I},\mathsf{J}) = \mathsf{A}(\mathsf{I},\mathsf{J}) + \mathsf{H}\mathsf{T}(\mathsf{I})
                                                                                       057
12
     CONTINUE
                                                                                       058
      KKK = N+IP
                                                                                       059
                                                                                       060
     J=1.
     IF ( INVRSE ) 401,403,401
                                                                                       061
403
    KKK = KKK
                                                                                       062
     GD TO 400
                                                                                       063
401
     KKK = KK
                                                                                       064
400
     DD 13 JJ= KK.KKK
                                                                                       065
      IF (WT(1)) 614, 625, 625
614
     DO 513 I= 1,N
                                                                                      0067
     W(I,JJ) = B(I,J)
513
                                                                                       068
     GO TO 13
                                                                                       069
625 DO 524 I = 1,N
                                                                                       070
524 W(I,JJ) = B(I,J) * WT(I)
                                                                                       071
 13 J=J+1
                                                                                       072
106 IF ( INVRSE ) 71,72,71
                                                                                       0.73
     K2 = N + 2
71
                                                                                       074
     KIP = N + IP
                                                                                       075
     KK = N + 1
                                                                                       076
     DO 75 I=1.N
                                                                                       077
     00 75 J = K2,KIP
                                                                                       078
     IF (J - I - KK) 73,74,73
                                                                                       079
```

```
ORO
 74 \ W(I,J) = 1.
                                                                                 081
      SO TO 75
                                                                                 082
      W(I,J) = 0.
73
                                                                                 083
      CONTINUE
75
      CALL TRIANG (W.N.IP. DET )
                                                                                 084
72
      WHERE W IS THE MATRIX WITH N ROWS AND (N+IP) COLUMNS TO BE TRIANGULA
                                                                                 085
C
                                                                                 086
      RIZED
C
      TO TEST THE SINGULARITY OF MATRIX W., W = TR(A)*A , W*X = W1.
                                                                                 OR7
                                                                                 088
      IF ( DET ) 82,80,82
                                                                                089
  82 CONTINUE
                                                                                 090
      GO TO 103
   BO SUM(1) = -1.
                                                                                 092
      GD TD 104
                                                                                 093
  103 CALL SOLVE (W.N.IP.X)
      WHERE W IS THE TRIANGULARIZED, X IS THE SOLUTION MATRIX WITH N ROWS AND IP COLUMNS.
                                                                                 094
C
                                                                                 095
C
      TO COMPUTE RESIDUAL MATRIX , U = A*X - B , U IS RESIDUAL MATRX(M,P)
                                                                                 096
                                                                                 097
  105 DO 16 I=1.M
                                                                                 098
      DO 16 K=1.IP
                                                                                 099
      U(I,K) =0.
                                                                                 100
      DO 15 J=1.N
                                                                                 101
   15 U(I+K) = U(I+K) + A(I+J) + X(J+K)
                                                                                 102
      U(I,K) = B(I,K) - U(I,K)
                                                                                 103
      DO 18 K=1.IP
                                                                                 104
      SUM(K) = 0.
                                                                                 105
      DO 18 I=1.M
   18 SUM(K) =SUM(K) +(U(I,K))**2
                                                                                 106
                                                                                 107
      IF ( INVRSE ) 722,104,722
                                                                                 108
      00 723 I = 1.N
                                                                                 109
      DO 723 J= 2.IP
  723 \times (I,J) = \times (I,J) + (SUM(1) / DFLOAT(M-N))
                                                                                 111
      DO 724 I = 1,N
                                                                                 112
      STDERR(I) = 0.
                                                                                 113
      II = I + I
  724 STDERR(I) = DSQRT( X(I, II))
  104 RETURN
                                                                          0116 CARDS
      END
C
      SUBROUTINE TRIANG
С
С
      SUBROUTINE TRIANG(A,M,N,DET )
                                                                                 120
      IMPLICIT REAL*8 (A-H, O-Z)
      DIMENSION A (3,4)
                                                                                 119
CTRIANG TO BE USED WITH SUBROJTINE GLSP
                 WHERE A IS THE MATRIX WITH M ROWS AND M+N COLUMNS TO
                                                                                 121
С.
                                                                                 122
С
                 BE TRIANGULARIZED.
                                                                                 124
      DET=1.
                                                                                 125
      MM1=M-1
                                                                                 126
      MPN=M+N
                                                                                 127
      DO 5 J=1.MM1
                                                                                 128
      MAXX = J
      VALUE = DABS( A(J,J))
                                                                                 130
      JP1=J+1
                                                                                 131
      DO 1 K=JP1,M
      IF (VALUE - DABS(A(K, J))) 2, 1, 1
              = DABS( A(K,J))
    2 VALUE
                                                                                 134
      MAXX=K
                                                                                 135
   1 CONTINUE
                                                                                 136
      DO 3 L=J,MPN
                                                                                 137
      TEMP = A(MAXX,L)
                                                                                 138
       A(MAXX,L) = A(J,L)
                                                                                 139
      A(J.L) = TEMP
                                                                                 140
       IF ( MAXX-J) 7,6,7
                                                                                 141
   7 DET = - DET
```

	6	DET = DET*A(J,J)		142
		$ADW = A(J_*J)$		143
		DD 4 L=J,MPN		144
	4	$A(J_0L) = A(J_0L)/ROW$		145
		DO 5 K=JP1,M		146
		$ROW = A(K_0J)$	•	147
		DD 5 L=J.MPN		148
	5	$A(K_*L) = A(K_*L) - ROW + A(J_*L)$		149
		DET = DET*A(M,M)		150
		₹OW = Δ(M₀M)		151
		DD 9 L = 4,MPN		152
	9	$\Delta(M_0L) = \Delta(M_0L)/ROW$		
		RETURN		154
		END	0041	CARDS
С				
C C		SUBROUTINE SOLVE		
•		SUBROUTINE SOLVE(A, M, N, X)		159
		IMPLICIT REAL*8 (A-H, O-Z)		
		DIMENSION A (3,4), X (3,4)		
csc	LVE			158
c		WHERE A IS THE TRIANGULARIZED MATRIX WITH M ROWS AND		160
č		M+N COLUMNS.		161
Č		X IS THE SOLUTION MATRIX WITH M ROWS AND N		162
Č		COLUMNS.		163
Ī.		MM1=M-1		165
		DO 2 L=1.N		166
		MPL=M+L		167
		DO 2 K=1,MM1		168
		MMK=M-K		169
		MMKPI=MMK+1		170
		X(M,L) = A(M,MPL)/A(M,M)		171
		SUM=0.		172
		DO 3 I=MMKP1.M		173
3		SUM=SUM+A(MMK,I) #X(I,L)		174
ź		X(MMK,L)=A(MMK,MPL)-SUM		175
_		RETURN		176
		END		177

0024 CARDS